627 research outputs found

    On the asymptotic acoustic-mode phase in red-giant stars and its dependence on evolutionary state

    Full text link
    Asteroseismic investigations based on the wealth of data now available,in particular from the CoRoT and Kepler missions, require a good understanding of the relation between the observed quantities and the properties of the underlying stellar structure. Kallinger et al. 2012 found a relation between their determination of the asymptotic phase of radial oscillations in evolved stars and the evolutionary state, separating ascending-branch red giants from helium-burning stars in the `red clump'. Here we provide a detailed analysis of this relation, which is found to derive from differences between these two classes of stars in the thermodynamic state of the convective envelope. There is potential for distinguishing red giants and clump stars based on the phase determined from observations that are too short to allow distinction based on determination of the period spacing for mixed modes. The analysis of the phase may also point to a better understanding of the potential for using the helium-ionization-induced acoustic glitch to determine the helium abundance in the envelopes of these stars.Comment: MNRAS, in the pres

    BiSON data preparation: A correction for differential extinction and the weighted averaging of contemporaneous data

    Get PDF
    The Birmingham Solar Oscillations Network (BiSON) has provided high-quality high-cadence observations from as far back in time as 1978. These data must be calibrated from the raw observations into radial velocity and the quality of the calibration has a large impact on the signal-to-noise ratio of the final time series. The aim of this work is to maximise the potential science that can be performed with the BiSON data set by optimising the calibration procedure. To achieve better levels of signal-to-noise ratio we perform two key steps in the calibration process: we attempt a correction for terrestrial atmospheric differential extinction; and the resulting improvement in the calibration allows us to perform weighted averaging of contemporaneous data from different BiSON stations. The improvements listed produce significant improvement in the signal-to-noise ratio of the BiSON frequency-power spectrum across all frequency ranges. The reduction of noise in the power spectrum will allow future work to provide greater constraint on changes in the oscillation spectrum with solar activity. In addition, the analysis of the low-frequency region suggests we have achieved a noise level that may allow us to improve estimates of the upper limit of g-mode amplitudes.Comment: Accepted for publication in MNRAS; 10 pages, 7 figure

    The relation between Δν\Delta\nu and νmax\nu_{max} for solar-like oscillations

    Full text link
    Establishing relations between global stellar parameters and asteroseismic quantities can help improve our understanding of stellar astrophysics and facilitate the interpretation of observations. We present an observed relation between the large frequency separation, Δν\Delta\nu, and the frequency of maximum power, νmax\nu_{max}. We find that Δν\Delta\nu is proportional to (νmax)0.77(\nu_{max})^0.77, allowing prediction of Δν\Delta\nu to about 15 per cent given νmax\nu_{max}. Our result is further supported by established scaling relations for Δν\Delta\nu and νmax\nu_{max} and by extended stellar model calculations, which confirm that Δν\Delta\nu can be estimated using this relation for basically any star showing solar-like oscillations in the investigated range (0.5<M/Msol<4.0).Comment: 5 pages, 8 figures, Letter accepted by MNRA

    Tests of the asymptotic large frequency separation of acoustic oscillations in solar-type and red giant stars

    Get PDF
    Asteroseismology, i.e. the study of the internal structures of stars via their global oscillations, is a valuable tool to obtain stellar parameters such as mass, radius, surface gravity and mean density. These parameters can be obtained using certain scaling relations which are based on an asymptotic approximation. Usually the observed oscillation parameters are assumed to follow these scaling relations. Recently, it has been questioned whether this is a valid approach, i.e., whether the order of the observed oscillation modes are high enough to be approximated with an asymptotic theory. In this work we use stellar models to investigate whether the differences between observable oscillation parameters and their asymptotic estimates are indeed significant. We compute the asymptotic values directly from the stellar models and derive the observable values from adiabatic pulsation calculations of the same models. We find that the extent to which the atmosphere is included in the models is a key parameter. Considering a larger extension of the atmosphere beyond the photosphere reduces the difference between the asymptotic and observable values of the large frequency separation. Therefore, we conclude that the currently suggested discrepancies in the scaling relations might have been overestimated. Hence, based on the results presented here we believe that the suggestions of Mosser et al. (2013) should not be followed without careful consideration.Comment: 6 pages, 4 figures, 1 table, accepted for publication by MNRAS as a Letter to the Edito

    Asteroseismology of red giants: photometric observations of Arcturus by SMEI

    Full text link
    We present new results on oscillations of the K1.5 III giant Arcturus (alpha Boo), from analysis of just over 2.5 yr of precise photometric observations made by the Solar Mass Ejection Imager (SMEI) on board the Coriolis satellite. A strong mode of oscillation is uncovered by the analysis, having frequency 3.51+/-0.03 micro-Hertz. By fitting its mode peak, we are able offer a highly constrained direct estimate of the damping time (tau = 24+/-1 days). The data also hint at the possible presence of several radial-mode overtones, and maybe some non-radial modes. We are also able to measure the properties of the granulation on the star, with the characteristic timescale for the granulation estimated to be 0.50+/-0.05 days.Comment: 6 pages, 5 figures; accepted for publication in MNRAS Letter

    A new efficient method for determining weighted power spectra: detection of low-frequency solar p-modes by analysis of BiSON data

    Full text link
    We present a new and highly efficient algorithm for computing a power spectrum made from evenly spaced data which combines the noise-reducing advantages of the weighted fit with the computational advantages of the Fast Fourier Transform (FFT). We apply this method to a 10-year data set of the solar p-mode oscillations obtained by the Birmingham Solar Oscillations Network (BiSON) and thereby uncover three new low-frequency modes. These are the l=2, n=5 and n=7 modes and the l=3, n=7 mode. In the case of the l=2, n=5 modes, this is believed to be the first such identification of this mode in the literature. The statistical weights needed for the method are derived from a combination of the real data and a sophisticated simulation of the instrument performance. Variations in the weights are due mainly to the differences in the noise characteristics of the various BiSON instruments, the change in those characteristics over time and the changing line-of-sight velocity between the stations and the Sun. It should be noted that a weighted data set will have a more time-dependent signal than an unweighted set and that, consequently, its frequency spectrum will be more susceptible to aliasing.Comment: 11 pages, 7 Figures, accepted for publication in MNRAS, Figure 6 had to be reduced in size to upload and so may be difficult to view on screen in .ps versio

    Performance of the Birmingham Solar-Oscillations Network (BiSON)

    Get PDF
    The Birmingham Solar-Oscillations Network (BiSON) has been operating with a full complement of six stations since 1992. Over 20 years later, we look back on the network history. The meta-data from the sites have been analysed to assess performance in terms of site insolation, with a brief look at the challenges that have been encountered over the years. We explain how the international community can gain easy access to the ever-growing dataset produced by the network, and finally look to the future of the network and the potential impact of nearly 25 years of technology miniaturisation.Comment: 31 pages, 19 figures. Accepted by Solar Physics: 2015 October 20. First online: 2015 December 7. Open Acces

    Variations of the amplitudes of oscillation of the Be star Achernar

    Get PDF
    We report on finding variations in amplitude of the two main oscillation frequencies found in the Be star Achernar, over a period of 5 years. They were uncovered by analysing photometric data of the star from the SMEI instrument. The two frequencies observed, 0.775 c/d and 0.725 c/d, were analysed in detail and their amplitudes were found to increase and decrease significantly over the 5-year period, with the amplitude of the 0.725 c/d frequency changing by up to a factor of eight. The nature of this event has yet to be properly understood, but the possibility of it being due to the effects of a stellar outburst or a stellar cycle are discussed.Comment: 6 pages, 6 figures, 1 table, to be published in MNRA
    • …
    corecore